Blood contrast agents enhance intrinsic signals in the retina: evidence for an underlying blood volume component.

نویسندگان

  • Jesse Schallek
  • Daniel Ts'o
چکیده

PURPOSE To examine the extent to which neurovascular coupling contributes to stimulus-evoked intrinsic signals in the retina. METHODS The retinas of five adult cats were examined in vivo. Animals were anesthetized and paralyzed for imaging stability. The retinas were imaged through a modified fundus camera capable of presenting patterned visual stimuli simultaneous with a diffuse near infrared (NIR). RESULTS Injections of nigrosin increased signal strength by as much as 36.3%, and indocyanine green (ICG) increased signal magnitudes by as much as 38.1%. In both cases, intrinsic signals maintained a colocalized pattern of activation corresponding to the visual stimulus presented. The time course of the evoked signals remained unaltered. The spectral dependency of signal enhancement mirrored the absorption spectra of the injected dyes. CONCLUSIONS The data are consistent with a neurovascular coupling effect in the retina. Patterned visual stimuli evoke colocalized NIR reflectance changes. The patterned decrease in reflectance was enhanced after nigrosin or ICG was injected into the systemic circulation. These findings suggest stimulus-evoked changes in blood volume underlie a component of the retinal intrinsic signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه سازی نگاره های MRA مغز با استفاده از ماده کنتر است زا در میدان مغناطیسی 1.5 تسلا

Background and purpose: Selection of suitable parameters for brain MRA requires accurate measures, because the image quality depends on the location of arteries, veins and also the velocity differences of blood, taking into account the low blood flow in small veins and arteries, use of paramagnetic contrast media is recommended. Hence, in present study, we investigated the imaging optimizatio...

متن کامل

مروری بر کاربردهای نانو تکنولوژی در تصویربرداری پزشکی با سنتز نانو ذرات حاجب وطراحی نشانگر(Probe)

Introduction: Molecular imaging is one of the main focuses in medical diagnostics. Nanoparticles allow us to effectively imagine the various component of molecule with high contrast. Different factors have been discussed about contrast agent nanoparticles. Moreover, some of the most important samples have been highlighted in the present study. Methods and Materials: This research is a theoreti...

متن کامل

Stimulus-evoked intrinsic optical signals in the retina: spatial and temporal characteristics.

PURPOSE To characterize the properties of stimulus-evoked retinal intrinsic signals and determine the underlying origins. METHODS Seven adult cats were anesthetized and paralyzed to maximize imaging stability. The retina was stimulated with a liquid crystal display (LCD) integrated into a modified fundus camera (Topcon, Tokyo, Japan). The LCD presented patterned visual stimuli while the retin...

متن کامل

Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension

In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...

متن کامل

Designing and Constructing an Optical System to measure Continuous and Cuffless Blood Pressure Using Two Pulse Signals

Introduction Blood pressure (BP) is one of the important vital signs that need to be monitored for personal healthcare. Arterial blood pressure is estimated from pulse transit time (PTT). This study uses two pulse sensors to get PTT. The aim of this study was to construct an optical system and to monitor blood pressure continuously and without cuff in people with different ages. Materials and M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2011